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Abstract: By learning from experience, reinforcement learning (RL) methods
learn from their environments adaptively, making them a promising direction for
generalizable robots. However, training robotic goal-conditioned RL policies of-
ten requires careful tuning of reward functions, especially because of early termi-
nation problems: giving the RL agent negative feedback (such as about crashes)
can cause it to be overly cautious. And yet, we desire agents that know to avoid
such crashes as they can damage robot hardware. We propose DEIMOS, a novel
safety-aware automatic training goal selector that requires no safety constraint Ja-
cobian or conditional value at risk computation, nor any difference in observation
space or reward shaping, and no extra neural parameters at deployment, making
it ideal for agents acting on complex robotic morphologies. We showcase the ef-
ficacy of our method on a challenging quadruped locomotion and manipulation
task. We empirically show that using our method, policies are tuned to optimize
for safety, producing populations of final agents that crash less often than popula-
tions trained with baseline curricula. Their reward performance is also similarly
improved.
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1 Introduction

In deep reinforcement learning (DRL), policies iteratively adapt as they explore their environments,
making it one of the most promising avenues when it comes to control policies for generalizable
robots. While DRL is promising, it is often prohibitively costly to train in the real world. A solution
is training in simulation, which often requires fine-tuning a noisy final policy on the hardware, which
can then result in damaging the robot. To take full advantage of the generality of learning from
experience, we require methods that allow us to be confident that the learned policy will perform
well and act safely on the final hardware with less adaptation.

Solely through goal selection during training, we seek to produce policies that are safer at evaluation
time while still accomplishing their goals to the best of their ability. We propose a novel automatic
goal selection method that is simple and easy to implement. In this strategy, we introduce a param-
eterized goal selector to the policy’s training, the “director”. In parallel to the policy’s training, we
train a failure predictor that learns to predict if the policy will crash on a given goal. By querying the
failure predictor, the director can retrieve goals that are adequately hard and better shape the policy’s
training. Our strategy requires no explicit constraints, reward shaping, input space augmentation,
computing auxiliary safety violation optimization terms, or additional policy neural parameters, all
of which can make training more brittle [1][2]. This makes it ideal for robotic learning. We demon-
strate our strategy on a challenging quadruped locomotion and manipulation task. Empirically, our
strategy greatly reduces trained policy population spread and mean for total evaluation crashes. It
similarly improves the final agents’ ability to perform the task (quantified through mean reward).
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2 Background

We consider learning over a goal-conditioned Markov Decision Process (GMDP) that is defined by
atuple < S,G, A, P, R, po, pg, T, > where S is the robotic state and sensor information, G is a
continuous vector space describing goals, P is the transition dynamics, R is the reward function, pg
is the initial state distribution, and ~y is a reward discount factor. A subset S, of S are undesirable
terminal states which we call “crash-states”. As RL for robotics is negatively impacted by early
termination problems [3][4], we consider crash-states with no associated negative reward term. As
for p, and T, they respectively describe the goal distribution over G and the amount of timesteps
between goal changes. During both training and deployment, a new goal g ~ p, is sampled every
[T > 1] GMDP timesteps. We call these goal-change events “interactions” and they are described
by tuples < s¢, g¢, g¢++1 >, with ¢ the current GMDP timestep, s; and g, the current state and goal,
and g;41 the goal at timestep ¢ + 1. During deployment, to indiscriminately cover every goal in
every state, pg is a uniform distribution over G.

Also important for this work are contextual bandits, which can be seen as single-step MDPs. As
such, the tuple defining them is much simpler: < S, A, R >, where S is the context given to the
decision policy, A is the set of actions available to the policy, and R : S x A — R is the reward
function. A subclass of bandits of particular interest are Bernoulli bandits, where the reward is a
binary success indicator R : S x A — 1 {success}. While seemingly restrictive, Bernoulli bandits
are actually very common in game theory and hold important relevance for this work. A common
heuristic for solving Bernoulli bandits with discrete action spaces is Thompson Sampling, wherein
a state-action value function is represented by a Beta distribution parameterized by the historical
success/failure of each action during training [5]. When making a decision, the agent samples an
arbitrary number of possible actions, rates them by the value function, and selects the highest-valued.
With adequate tuning, such a strategy is close to optimal [6].

3 Method

We posit that an optimal distribution of training goals exists such that my crashes less at evaluation
time then when using a uniform goal distribution. An oracle goal selector would select goals that are
neither too easy (already solvable) nor too hard (intractable), yet still suitably handle catastrophic
forgetting (by occasionally sampling easier goals) and exploration (by sampling harder goals). The
mechanics of learner agents being incredibly complex, we pose two major assumptions to render
this problem tractable: (1) The probability of my crashing upon receiving a given goal is a useful
signal for goal selection, and (2) The oracle would presumably select goals with intermediary crash
probabilities often, but also select easy and hard goals occasionally. Named after the policy’s own
fear of crashing, we call the crash probability the “fear score”, given by a “fear function”. We
introduce a new agent to the policy’s training, the “director” pg, who uses a fear function to gain
traction over training goal selection. Because 7y is non-stationary, the likelihood of a given goal
causing a crash is itself non-stationary, and thus the fear function must be learned online, alongside
mp. This naturally implies a game between the policy and the director. This formulation follows
the intuition of numerous other works on adversarial training and goal selection [7][8][9]. The main
difference in our work is that we eschew the traditional three-agent setup of generator, discriminator,
and agent; instead we rely on only agent and director. Additionally, we target both deployment safety
and task performance, not just performance. Finally, we explicitly limit the director’s power such
that it is not fully adversarial by tuning its selection strategy over the fear scores. Otherwise, it is too
good at crashing 7y, and produces useless policies (see Appendix 7.1).

For my, the game at hand is about selecting an optimal sequence of actions in a GMDP to survive
goals set during an interaction with the director while also acting upon them optimally. For pg,
the game is about selecting a single goal ¢, every 7 GMDP timestep that will cause the policy
to crash, limited by the suboptimal sampling strategy we impose, conditioned on the information
that the policy is in given state-goal pair < s;, g >. Both agents optimize an expectation over a
simple binary win condition W<(s, g¢, gi+1) = 1 {m(-|gss1) crashes within 7 steps}. The policy



implicitly minimizes W by default as part of its RL objective (early termination in infinite-horizon
problems implies a lower cumulative sum of rewards). The director seeks to maximize W¢.
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DEIMOS’s fear network is trained using a binary cross-entropy loss on interactions
[< st, 91, 9+1 > WE(St, g1, g+1)] sampled from 7’s on-policy rollout buffer. As output, Fy pro-
duces a value from 0 to 1. It is important to note that our fear network is not calibrated. Its only
predictive power is a ranking of different goals. We conduct a series of ablations on fear sampling
strategies and select the best one (see Appendix 7.1). The policy 7y is learned using Proximal Policy
Optimization [10]. We train and evaluate 30 RL seeds in Legged Gym [4], a state-of-the-art simula-
tor for legged robots based on Isaac Gym [11]. Here, the state s, contains the robotic state and sensor
information and a height map of the surrounding terrain. We study a very unstable morphology [12]:
a quadruped with an arm on board (“quad+arm”). The shifting weight of the arm makes traversing
steep stairs at fast speeds while also matching desired positional arm goals incredibly difficult. The
reward function is primarily based on matching goals but also includes terms to make learning gaits
easier [4]; we only report goal-matching rewards. We train using [7” = 10 seconds], but to showcase
agile behaviour and generalization to faster goal changes, we evaluate using [73 = 2 seconds]. This
timing requires rapidly and responsively handling changes in momentum and bearing the quickly
shifting center of weight of the arm. During all evaluations, p, is uniformly sampled from G to
cover all goals in all states indiscriminately. The simulator includes uniformly-noised terrain sur-
faces and steep stairs and slopes; we evaluate in terrain of “medium” steepness. As the baseline,
we use the “Uniform” sampling strategy p, = U(G). We also evaluate “CL”, where the possible
range of G increases as 7y gets better and where p, = U(G), as done in Legged Gym [4]. We also
implement Random Network Distillation (“RND”) over interaction space [13], selecting the most
surprising sampled g;; goal. More results and details can be found in Appendices 7.2 and 7.3.



4.1 Results

As shown in Figure 1, training-goal distributions have a large influence in crashes experienced during
training. Figure 2 shows training-goal distributions indeed also have a large influence on deployment
crashes, confirming our intuition. Also shown is that DEIMOS trains crash-resistant policies more
reliably than the baselines without impacting goal-matching performance (rewards). Additionally,
DEIMOS greatly reduces population spread and standard error for crashes in its policy population in
the two hardest evaluation environments (while also lowering the mean amount of crashes). Finally,
while DEIMOS does not beat the best baseline in the easiest environment and for the quadruped
without an arm on board, it remains competitive (for sake of space, tables are shown Appendix 7.3).

5 Related work

Related to the task of improving RL deployment safety are “Safe RL” methods, where explicit safety
constraints are applied during training and deployment through reward shaping [1][14], safe inter-
vention/exploration [15][16], or optimization constraints [17][2]. Of particular interest is “Intrinsic
Fear” [14], where a fear network is used to shape rewards away from crash-states. Instead, DEIMOS
takes inspiration from the constrained optimization field, where “fail-first” methods seek to learn
about failure cases before solving a task [18] (this also follows DaGGeR’s intuition [19]: showing
recoverable states close to crash-states should enable a policy to learn about recovery). Also closely
related to DEIMOS are sub-goal selection methods, some of which train a generative adversarial
network (GAN) to generate appropriate goals or environment parameters [7][20][21][22][23][24].
In contrast, we forgo the need to train three models (generator, discriminator, agent) by deriving
the generator from the fear network. This avoids the very unstable and hyperparameter-dependant
nature of training GANs [21], at the cost of less expressive goal generation (i.e., DEIMOS cannot
handle images). Another class of sub-goal selection methods includes Skew-Fit [25], where a uni-
form distribution over goals is learned (which we empirically show to be beat by DEIMOS for our
task).

6 Conclusion

We proposed DEIMOS, a novel training-goal selection method that enables more reliable training
of agile robots. In a challenging quadruped locomotion and manipulation task, our method greatly
improves trained policy population spread while also either improving or not moving the median and
mean compared to the best baseline for both crashes and rewards. In the future, we plan to extend
this work, including more RL problems and performance comparisons to other state-of-the-art goal
selection methods.
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Figure 2: Total evaluation crashes for 30 RL seeds for 8168000 timesteps each: the DEIMOS train-
ing regimen is more reliable at training crash-avoiding policies than the baselines. Additionally,
average reward performance over the timesteps is near-identical for all methods, with DEIMOS
again being the most reliable.
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7 Appendix
7.1 Ablations

To select the best goal selection scheme, we conduct a series of ablations upon DEIMOS. (1) Fol-
lowing our Thompson Sampling intuition, “DEIMOS-canonical” selects the most fearful goal in a
sample batch. This version of DEIMOS is purely adversarial. (2) As verified experimentally
(see Subsection 7.3), “DEIMOS-canonical” does a poor job at training 7. To address this, we eval-
uate “DEIMOS-threshold” (“DEIMOS” for short), where random goals above some threshold are
selected. In this way, the fear network selects goals that crash the robot “optimistically”. (3) To
address the issue of the fear network not being calibrated, we evaluate “DEIMOS-min-threshold”,
where the fear scores are normalized by the minimal fear value of the sample population, and then a
random goal over a threshold is selected as in DEIMOS-threshold.

As seen in 7.3, DEIMOS performs better than DEIMOS-canonical and DEIMOS-min-threshold
across the board, in every evaluation setup. This version of DEIMOS is the one shown in Section
4.1 and Appendix 7.3.

7.2 Experimental Setup
7.2.1 Training

For the quadruped without an arm on board (“quad”), G = [—1, 1]3 describes z, y, and angular
velocities. For the quadruped with an arm on board (“quad+arm™), G = [—1, 1}6 describes x, y, and
angular velocities and relative x, y and z arm positions.

We use the following reward terms (see Legged Gym [4] for more details):

action_rate = -0.01
ang_vel_xy = -0.05
base_height = -0.0
collision = -1.0
dof_acc = -2.5e-7
dof_vel = -0.0

penalty on actions

penalty to keep heading straight
prevents base wobbling when active
prevents collisions

penalty to dof acceleration
penalty to dof velocity

feet_air_time = 1.0 incentivizes raising feets up
feet_stumble = -0.0

lin_vel_z = -2.0 prevents base wobbling
orientation = -0.0 penalty to not being upright
stand_still = -0.0 penalty to no movement

termination = 0.0
torques = -0.0002
dof_pos_limits = -10.
tracking_ang vel = O.
tracking_lin_vel = 1.
tracking_lin_vel_arm

no negative termination term
penalty to force magnitude
penalty when going over dof limits
# part of goals
# part of goals
0.5 # part of goals

#
#
#
#
#
#
#
# makes foot movement smoother
#
#
#
#
#
#

o o o

In addition to the implicit curriculum emerging from the goal selection strategy in play, there is a
second curriculum that influences learning in Legged Gym [4]. As the policy learns, the robots it
learns over are moved up or down difficulty levels according to the its performance. This is more

LEINT3

granular than our “easy”, “medium”, “hard” evaluation levels; there are 10 levels in all.

7.2.2 Baselines

“Uniform” simply uniformly samples goals from G.

“CL” gradually increases the range of G. This increase happens when the policy matches the re-
quested goals above some threshold. This happens independently for the quadruped-centric goals
and for the arm-centric goals.



“RND” is modelled after the intrinsic reward scheme (Random Network Distillation [13]). We apply
RND to interaction space. We then invert the RND network in the same manner we invert the fear
network, thereby selecting the highest-rated value according to RND. We learn RND using the same
interaction experience buffer used to learn DEIMOS’ fear network.

7.2.3 Evaluation

9

We showcase three different evaluation terrain difficulties: “easy”, “medium”, and “hard”, in order
of increasing steepness and amplitude applied to noised terrain surfaces. All domain randomiza-
tion, friction randomization, and random pushes used during training are turned off for evaluation.
We also evaluate different goal sampling frequencies ( [7; = 0.5 seconds], [Tz = 2 seconds] and
[75 = 10 seconds)). The frequencies were chosen to accurately showcase the policies’ response to
noise goals (77), fast and agile goal changes (73), and long-horizon goals (73).

All data related to evaluation crashes and goals was subjected to a rolling average with window
size 5. The last 10 reported values were then added together. This was done to produce more
representative results.

7.3 Supplementary Results

We present the full results of our series of evaluations over many different steepness levels and re-
sampling frequencies. For each table, the best performing row is somewhat subjective, as accurately
evaluating robotic RL is always difficult. Population standard error is incredibly important. Reduc-
ing crashes is obviously desirable, especially within the scope of deploying to real robots, but so is
increasing rewards. Often, doing one comes at the cost of the other.

We mark what we consider to be the best for each section by “(1)” in the method column. Because
evaluating robotic RL is so difficult, we also mark the second-best by “(2)”. We do this because no
single method is the best across the board. We find that DEIMOS is often (2) when it is not (). But
we are obviously biased, thus we show the full result tables.

7.3.1 Quadruped + Arm

quad+arm in Difficulty=Easy
Crashes 4= STD Error Rewards 4= STD Error

frequency method

0.5 CL 621.16 = 155.44 1.39 4+ 0.01
(2) DEIMOS 109.0 £+ 14.28 1.434+0.0
DEIMOS-canonical 10065.74 + 2511.32 1.29 +£0.02
DEIMOS-min-threshold 118.35 + 8.43 1.44+0.0
RND 287.95 + 60.34 1.41 4+ 0.01
(1) Uniform 40.52 + 3.68 1.44 4 0.0

2.0 CL 483.62 + 120.69 1.77 £ 0.01
(2) DEIMOS 54.27 + 7.08 1.814+0.0
DEIMOS-canonical 9972.31 4 2488.79 1.65 +0.02
DEIMOS-min-threshold 82.39 + 5.46 1.78 £ 0.0
RND 277.9 +£53.71 1.78 +£0.01
(1) Uniform 24.12 +2.53 1.824+0.0

10.0 CL 313.27 + 79.01 1.87 4+ 0.01
(2) DEIMOS 27.32 +2.15 1.93+0.0
DEIMOS-canonical 9861.56 4+ 2501.61 1.77 £ 0.02
DEIMOS-min-threshold 49.75 + 3.89 1.91+0.0
RND 9356.39 4+ 2152.23 1.8 +£0.02
(1) Uniform 20.52 +1.26 1.94 4+ 0.0

Table 1: DEIMOS beats the other methods, but does worse than Uniform. Thus DEIMOS is best
used in harder terrain.



quad+arm in Difficulty=Medium
Crashes & STD Error Rewards + STD Error

frequency method

0.5 CL 646.98 + 145.76 1.38 = 0.01
(2) DEIMOS 244.07 4+ 39.48 1.39+£0.01
DEIMOS-canonical 10900.16 4 2543.11 1.22 +0.02
DEIMOS-min-threshold 610.77 & 100.42 1.33 +£0.01
RND 552.14 4+ 98.03 1.37 +0.01
(1) Uniform 218.69 & 38.68 1.4 +0.01

2.0 CL 546.03 +116.9 1.72 4+ 0.01
(1) DEIMOS 120.65 £ 8.75 1.78 £ 0.0
DEIMOS-canonical 10828.5 + 2548.06 1.55 +0.02
DEIMOS-min-threshold 731.09 4 89.98 1.66 = 0.01
RND 797.95 4+ 103.88 1.69 4+ 0.01
(2) Uniform 209.6 + 33.72 1.75+0.01

10.0 CL 385.37 & 75.64 1.83 £0.01
(1) DEIMOS 143.82 +£9.08 1.874+0.0
DEIMOS-canonical 10384.7 + 2526.03 1.67 £0.03
(2) DEIMOS-min-threshold 351.8 4-42.26 1.8 +0.01
RND 1040.14 + 198.69 1.74 £ 0.03
(1) Uniform 153.15 £ 15.7 1.86 + 0.01

Table 2: DEIMOS does better in all cases except 7 = 0.5. For 7 = 10, both DEIMOS and Uniform
are marked as (1): they are virtually the same both for crashes and for rewards.

quad+arm in Difficulty=Hard
Crashes = STD Error Rewards 4+ STD Error

frequency method

0.5 CL 1874.12 + 158.09 1.21 4+ 0.01
(1) DEIMOS 3274.39 4+ 457.38 1.17 £ 0.02
DEIMOS-canonical 16463.74 + 2141.75 1.08 4 0.02
DEIMOS-min-threshold 7680.41 + 1082.06 1.01 £ 0.02
(2) RND 4076.66 £ 737.66 1.22 +0.02
Uniform 4371.62 +504.4 1.24+0.01

2.0 CL 2161.77 £ 103.77 1.42 +0.01
(1) DEIMOS 3914.53 +484.3 1.44+0.01
DEIMOS-canonical 17859.94 + 2487.53 1.28 £0.03
DEIMOS-min-threshold 10069.51 4 656.95 1.17+0.02
RND 5557.67 £ 763.41 1.43 +£0.02
(2) Uniform 4885.05 &+ 773.97 1.42 +0.02

10.0 CL 1374.52 £ 98.62 1.58 = 0.02
(1) DEIMOS 2527.12 £ 355.95 1.57 +£0.02
DEIMOS-canonical 15670.64 + 3073.54 1.41 +£0.04
DEIMOS-min-threshold 5914.04 + 509.52 1.43 +£0.02
RND 4711.6 +684.71 1.54 +0.01
(2) Uniform 3636.55 £+ 523.42 1.57 4+ 0.01

Table 3: DEIMOS also does better here. Note that while CL seems to do better, because it performs
so much worse in all other environment, we know this to be an artefact of our evaluation strategy.
This is why CL is not marked (1) in this table.

7.3.2 Quadruped

While impressive in the quadruped+arm setting, DEIMOS is less impressive when applied to a
quadruped without an arm on board. This can be explained by the increased instability of the former
setting. It is simply harder to issue the right training goals for the bare quadruped. This instability



also gives more reason to use DEIMOS; after all, why use a goal sampling more complex than
Uniform when the latter is perfectly serviceable?

Finally, notice that possible amounts of crashes for this morphology are much lower. Quad+arm
crashes around ten times more often than the bare quadruped, no matter the training regimen. This
is why we selected quad+arm for our main evaluation: learning policies for the bare quadruped is
already tractable without needing a better goal sampling strategy.

quad in Difficulty=Easy
Crashes &= STD Error

Rewards 4= STD Error

frequency method

0.5 CL 58.43 +13.7 1.42 4+ 0.0
DEIMOS 14.82 £ 0.57 1.424+0.0
DEIMOS-canonical 98.81 + 16.56 1.38 £ 0.0
DEIMOS-min-threshold 23.04 + 0.86 1.424+0.0
(1) RND 6.33 £0.75 1.44 4+ 0.0
(2) Uniform 10.74 = 1.16 1.424+0.0

2.0 CL 29.3 +£5.48 1.81 4+ 0.0
DEIMOS 15.13 £ 0.86 1.824+0.0
DEIMOS-canonical 79.53 + 9.07 1.794+ 0.0
DEIMOS-min-threshold 14.56 + 0.53 1.83 £ 0.0
(1) RND 6.88 £ 0.5 1.83 £ 0.0
(1) Uniform 6.57 £0.42 1.824+0.0

10.0 (2) CL 4.43 £0.09 1.944+0.0
DEIMOS 8.36 £ 0.6 1.93 £ 0.0
DEIMOS-canonical 18.45 + 2.17 1.924+0.0
DEIMOS-min-threshold 5.88 +£0.19 1.94 4+ 0.0
RND 5.240.24 1.93 £ 0.0
(1) Uniform 3.94 £0.11 1.93 £ 0.0

Table 4: DEIMOS performs competitively but is beat by both Uniform and RND.

quad in Difficulty=Medium
Crashes + STD Error

Rewards &= STD Error

frequency method

0.5 CL 109.75 £ 16.58 1.39 +£0.01
DEIMOS 70.43 +2.09 1.39+0.0
DEIMOS-canonical 249.69 £+ 22.1 1.34 +£0.01
DEIMOS-min-threshold 77.29 £+ 1.63 1.39 £ 0.0
(1) RND 34.16 £1.03 1.41+0.0
(2) Uniform 43.98 +£1.43 1.4+£0.0

2.0 CL 103.06 £ 4.86 1.77+ 0.0
DEIMOS 92.17 £ 2.54 1.77+0.0
DEIMOS-canonical 226.14 4+ 24.79 1.71 £ 0.01
DEIMOS-min-threshold 94.7 + 2.09 1.774+ 0.0
(1) RND 65.16 + 0.64 1.794+0.0
(2) Uniform 72.96 +£ 1.7 1.79+ 0.0

10.0 CL 83.05 £+ 2.65 1.89+0.0
DEIMOS 69.12 £+ 0.82 1.89 +0.0
DEIMOS-canonical 147.79 £12.28 1.86 £ 0.0
DEIMOS-min-threshold 80.24 & 2.51 1.89 + 0.0
(2) RND 64.51 +£0.95 1.89 + 0.0
(1) Uniform 62.97 £1.0 1.9£0.0

Table 5: Again, RND does fairly well here. DEIMOS is very comparable to both Uniform and RND

in most cases.
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quad in Difficulty=Hard

frequency method

Crashes + STD Error

Rewards 4+ STD Error

0.5 CL 966.91 &+ 65.46 1.25 4+ 0.01
DEIMOS 807.47 + 30.84 1.25 +£0.01
DEIMOS-canonical 2658.74 £+ 463.67 1.194+0.01
DEIMOS-min-threshold 535.8 +13.49 1.3£+0.0
(1) RND 443.46 + 22.48 1.31+£0.01
(2) Uniform 490.36 + 24.95 1.31 +£0.01

2.0 CL 1146.71 + 56.07 1.53 +£0.01
DEIMOS 909.2 + 39.49 1.56 £0.01
DEIMOS-canonical 2851.77 £ 550.42 1.46 +0.03
(1) DEIMOS-min-threshold 714.18 £ 4.58 1.64 4+ 0.0
(2) RND 725.64 4+ 20.19 1.61 +£0.01
(2) Uniform 742.06 +12.43 1.59 £ 0.0

10.0 CL 854.23 + 27.54 1.67 +£0.01
DEIMOS 675.52 + 20.04 1.71 +0.01
DEIMOS-canonical 1858.76 + 314.89 1.64 +0.02
(2) DEIMOS-min-threshold 614.63 = 5.98 1.73+0.0
(1) RND 591.11 & 5.48 1.75+0.0
(1)Uniform 602.64 4+ 3.43 1.75+0.0

Table 6: Again, Uniform and RND both beat DEIMOS.

7.3.3 Supplementary results discussion

It is very interesting that RND performs so much better in the bare quadruped setting than in the
quadruped+arm setting. It seems like the good goal diversity sampled by RND is very useful for
training the bare quadruped, but does not lend itself well whatsoever to training the more unstable
morphology.

It is also interesting that DEIMOS performs worse here, while DEIMOS-min-threshold performs
much better than in quad+arm. This can be explained by the difficulty of learning the fear function.
In the bare quadruped setting, the fear network is much easier to learn, and it is thus “more cali-
brated”. In other words, substracting the minimal fear value from the scores influences the scores
less, and thus DEIMOS-min-threshold almost catches up to DEIMOS.

Finally, in almost every table presented here, the “rewards” column is the least interesting. All
methods achieve remarkably similar reward scores (depending on frequency and difficulty), with
only a few outliers (especially in the quad+arm morphology). This is why we selected quad+arm
for our main evaluations: quad is simply relatively easy to learn for (at least in Legged Gym [4]).
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